Industry 4.0:

Innovative Communication and Sensing Technologies.

Thomas Leyrer – <u>t-leyrer@ti.com</u>

April 13, 2015 - IEEE Sensors Applications Symposium

Agenda

Industry 4.0 -> Factory Automation

The "Internet of Things" has many Protocols

Intelligence in Factory Automation

5

Cyber Physical Production System

Key attributes:

- Heterogeneous Network ٠
- Real-time communication ٠
- Secure access and coms •

New Potential:

- "Industrial" Energy Harvesting
- NFC, RFID, Sensor tag
- **Optical sensing**
- Inductive sensing
- FRAM data logging

6

Industrial – Critical System Parameters

Feature	Latency	Jitter	Safety	Energy
Plant	S	S	24/7	MW
Machine	ms	ms	24/7	kW
Subsystem	US	US	SIL	W
Function	ns	ns	FIT, POH	Harvesting - mW
]
	Efficiency			

More critical parameters are:

- form factor
- scalability
- robustness
- multi-protocol
- isolation

Industry 4.0 - Networking Technologies

PRU optimized for low latency and jitter

- Non pipelined CPU is 100% deterministic no jitter in real-time execution
- Broadside interface with 1000 bit wide data bus supports **lowest latency** transfers
- Register mapped IOs and bit-wise addressing provide max interface flexibility
- 200 MHz design allows for scalable integration on Analog, MCU and MPU products

Industrial Communication Subsystem (ICSS)

- Industrial Ethernet
- Serial Fieldbus
- Encoder Feedback
- Backplane Communication
- Sigma Delta filter
- Custom interfaces
- Signal Processing
- Application Synchronization

ICSS Functional Block Diagram

Motor side Sensing goes Digital

More Intelligence on Embedded Controllers

App Acceleration

- Trigonometric math acceleration
- Single/few cycle sin, cos, arctan, divide, square root
 - Park & Inverse Park
 - Space Vector Generation
 - DQ0 Transform & Inverse DQ0
 - FFT Magnitude & Phase Calculations
- Complex math, FFT, and Viterbi algorithm acceleration
- CRC, AES acceleration
 - Complex FFT, CRC and AES
 - Motor Vibrational Analysis
 - Power Line Communications

DSP Math Efficiency

- Up to 300 MIPS per core
- 800 MIPS MCU available today
- Single cycle execution across pipeline; Atomic R-M-W operations
- 32x32 fixed-point MAC, doubles as dual 16x16 MAC
- IEEE Single-precision floating point hardware and MAC
- 16-bit / 32-bit instructions for density / performance
- Blended Control + DSP instruction set architecture

Parallel Processing

- CLA co-processor is a streamlined C28x processor
- Independent processing of multiple control loops
- IEEE Single-precision 32-bit floating point math operations
- Direct access to control peripherals

"High-end MCUs provide x86 like algorithm performance at the sensor level"

IO-Link – Sensor Interface

Technical Specification:

Data rate:	4.8kB, 38.4kB, 230.4 kB
Cable length:	20 m, unshielded
Cycle time:	2ms
Communication:	point to point, serial, half-duplex
Signal:	500mA (80us) start pulse, 24 V pulse modulation

IO-Link: Smart Sensor Profile

"Point to point sensors are concentrated and mapped into industrial communication protocols"

Innovative Sensing Technologies

• Inductive Sensing – LDC 1000

- Optical Sensing 3D TOF OPT8241
- "Smart Sensor Tag" RF430FRL15x

"Product and material sensing beyond identification"

Inductive Sensing: Basic Theory

Inductive Sensing - Benefits

Advantages of Inductive Sensing:

- Does not require magnets
- Reliable by virtue of being contactless
- Insensitive to environmental contaminants (dust, dirt, etc.)
- Sub-micron resolution (16 bit on Rb, 24 bit on L)
- Sensor is low-cost

Benefits

Electronics can be located remotely from the sensor

LDC1000 Evaluation Module

LDC1000

- EVM and GUI provide complete prototyping and evaluation platform
- USB interface allows control and evaluation of LDC1000 with GUI
- Includes 14-mm, 2-layer PCB coil sensor
 - Coil can be removed to allow prototyping with other coils, springs or inductors
- Coil and LDC1000 board section can be removed
 - Interface with other MCUs
 - Implement multi-channel prototyping

3D Imaging/TOF Sensor Operation

3D ToF Chipset Diagram

Features:

- Pixel resolution:
- Max Frame Rate:
- IR Filter:
- Distance:
- Pulse frequency:
- Output:

- up to QVGA (320x240, 76k pixels)
- 60 fps ... 1000 fps (lower resolution)
 - (820-865nm), support HDR,
- 10-20mm, 1-2 meter (machine vision), 10-15 m (safe island)
- up to 20MHz (LED), up to 50MHz (laser)
 - DVP 8bit parallel , hsync, vsync, pixel clk (24 MHz)

Machine Vision Example

NFC / RFID Operating Model

H – Field from Reader coil vs. distance

K, coupling coefficient is related to *M* as:

$$k = \frac{M}{\sqrt{L_1 L_2}}$$

k (*typical*) – 1% to 10 %

$$H(d) = \frac{N_r I_r r_r^2}{2(r_r^2 + d^2)^{\frac{3}{2}}}$$

Induced voltage in parallel coil vs. distance

$$\mathbf{V}_{\mathrm{id}} = 2\pi \mathbf{f} \mathbf{N}_{\mathrm{T}} \mathbf{Q}_{\mathrm{T}} \mathbf{S}_{\mathrm{T}} \boldsymbol{\mu}_{\mathrm{o}} H(d)$$

Introducing RF430FRL15xH sensor transponder

ADC	Analog sensor interfaceIntegrated temp sensor
NFC	 Secure proximity pairing Secure data transfers
Serial IF	Digital sensor interfaceConnection to a gateway
FRAM	 Non-volatile / fast access Data & program storage
CPU	Collection setupData processing
Low power	Passive operation1.5V battery

Expand the uses and lifetimes of industrial sensors

NFC provides reliability and endurance for sensors:

- Putting the sensor into material and product for condition monitoring over lifetime.
- Allow hermetically encapsulated industrial sensors to be placed in space-constrained areas and dangerous or hash environments
- Ultra-low-power FRAM eliminates the need for battery changes, or enables battery-free sensors
- Easily transfer data within close proximity without physically accessing sensor
- Ideal for applications and areas where workers can't physically access sensors to collect data

Summary – Industrial Sensor

- The factory of the future needs sensors which are
 - Intelligent
 - Functional safe
 - Real-time in communication and control
 - Compliant to sensor profiles
 - Robust in harsh environments
- · Communication interfaces for sensors need to support
 - Wireless
 - Wired
 - Remote powered (wired and wireless)
- Product/Material attached sensor need
 - energy harvesting
 - encapsulation which works over product life time

Summary Industrial Communication

- Dedicated protocols for real-time, deterministic and safe delivery of IO sensor data in factory automation
- Concentration of point to point sensor interface into fieldbus and Industrial Ethernet
- Motor side communication goes digital for current sensing and position feedback.
- Industrial sensor communication goes digital with IO-Link
- Encapsulation of real-time protocols into socket based communication using UPC UA at higher layers
- Trend towards gigabit Industrial Ethernet to add more service capability
- Modulated data over power saves expensive cables
- Wireless on non-real-time setup (process automation)

www.ti.com\sensing

🜵 Texas Instruments